Part Number Hot Search : 
STR51424 L5201 FFCKS5L1 BZX85C15 SMB12 BL55028 1N1817 DMG3418L
Product Description
Full Text Search
 

To Download R5325K033A-TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  r5325x series 150ma dual ldo regulator no.ea-127-071112 1 outline the r5325x series are cmos-based voltage regulator ics with high output voltage accuracy, low supply current (typ. 3.0 a), low dropout, and fast transient response. each of these voltage regulator ics consists of a voltage reference unit, an error amplifier, resistors for se tting output voltage, a current limit circuit, and a chip enable circuit. these ics perform with low dropout voltage due to built-in transistor with low on resistance, and a chip enable function prolongs the battery life of each system. the li ne transient response and load transient response of the r5325x series are excellent, thus t hese ics are very suitable for the power supply for hand-held communication equipment. the supply current at no load of r5325x series is remarkably reduced compared with r5323x series. the mode change signal to reduce the supply current is not necessary. the output voltage of these ics is inte rnally fixed with high accuracy ( 1.0%). since the packages for these ics are sot-23-6 and dfn(plp)1820-6 package, dual ldo regulators are included in each, high density mounting of the ics on boards is possible. features ? input volt age ................................................................. 1.5v to 6.0v ? output voltage .............................................................. 1.2v to 4.0v ? output voltage accuracy............................................... 1.0% ? supply current .............................................................. typ. 3.0a (vr1, vr2) ? standby current ............................................................ typ. 0.1 a (vr1, vr2) ? dropout voltage ............................................................ typ. 0.2v (i out = 150ma ,v out = 3.0v) ? ripple rejection ............................................................ typ. 55db (f = 1khz) ? built-in fold-back protection circuit ................................ typ. 50ma (c urrent at short mode) ? temperature-drift coefficient of output voltage ........... typ. 100ppm/c ? line regulation ............................................................. typ.0.1%/v ? built-in chip enable circuit (active ?h?) ? fast transient response time from large load current to small load current. (50% less than r5323x) ? packages ..................................................................... sot-23-6 , dfn(plp)1820-6 ? ceramic capacitor is recommended. (0.1 f or more) applications ? power source for handheld communication equipment. ? power source for electrical appliances such as cameras, vcrs and camcorders. ? power source for battery-powered equipment.
r5325x 2 block diagrams r5325xxxxa ce1 gnd v out1 vref current limit error a mp. r1_1 r2_1 ce2 vref current limit error a mp. r1_2 r2_2 v dd v out2 r5325xxxxb ce1 gnd v out1 vref current limit error a mp. r1_1 r2_1 ce2 vref current limit error a mp. r1_2 r2_2 v dd v out2
r5325x 3 selection guide the output voltage, auto discharge function*, and the tapi ng type for the ics can be selected at the user's request. the selection can be made with designating the part number as shown below; r5325xxxx x-xx -x part number a b c d e code contents a designation of package type: n: sot-23-6 k: dfn(plp)1820-6 b setting combination of 2ch output voltage (v out ) : serial number for voltage setting, stepwise setting with a step of 0.1v in the range of 1.2v to 4.0v is possible for each channel. c designation of mask option: a version: without auto discharge function* at off state. b version: with auto discharge function* at off state. d designation of taping type: ex. tr (refer to taping specifications ; tr type is the standard direction.) e designation of composition of plating: ? f : lead free plating (sot-23-6) none : au plating (dfn(plp)1820-6) *) when the mode is into standby with ce signal, auto discharge transistor turns on, and it makes the turn-off speed faster than normal type.
r5325x 4 pin configuration sot-23-6 dfn(plp)1820-6 6 5 4 1 2 3 (mark side) top view 6 54 123 bottom view 4 5 6 32 1 pin descriptions ? sot-23-6 ? dfn(plp)1820-6 pin no. symbol description pin no. symbol description 1 v out1 output pin 1 1 v out2 output pin 2 2 v dd input pin 2 v dd input pin 3 v out2 output pin 2 3 v out1 output pin 1 4 ce2 chip enable pin 2 4 ce1 chip enable pin 1 5 gnd ground pin 5 gnd ground pin 6 ce1 chip enable pin 1 6 ce2 chip enable pin 2 ? tab in the parts have gnd level. (they are connected to the back side of this ic.) do not connect to other wires or land patterns.
r5325x 5 absolute maximum ratings symbol item rating unit v in input voltage 6.5 v v ce input voltage (ce pin) ? 0.3 to 6.5 v v out output voltage ? 0.3 to v in + 0.3 v i out1 , i out2 output current 200 ma power dissipation (sot-23-6) * 420 p d power dissipation (dfn(plp)1820-6) * 880 mw topt operating temperature range ? 40 to 85 c tstg storage temperature range ? 55 to 125 c *) for power dissipation, please refer to package information to be described. absolute maximum ratings absolute maximum ratings are threshold limit values that must not be exceeded ever for an instant under any conditions. moreover, such values for any two items must not be reached simultaneously. operation above these absolute maximum ratings may cause degradation or permanent damage to the device. these are stress ratings only and do not necessarily imply functional operation below these limits.
r5325x 6 electrical characteristics ? r5325xxxxa/b topt = 25 c symbol item conditions min. typ. max. unit v out > = 1.5v 0.99 1.01 v out output voltage v in = set v out + 1v i out =1ma v out < 1.5v ? 15mv + 15mv v i out output current v in ? v out = 1.0v 150 ma v out / i out load regulation v in = set v out + 1v 1ma < = < = < = < = < = < = < = < = = 150ma v out = 4.0v 0.17 0.23 v i ss supply current v in = set v out + 1v, i out = 0ma 3 7 a i standby standby current v in = 6v v ce = gnd 0.1 1.0 a v out / v in line regulation set v out + 0.5v < = < = = 30ma 0.1 0.3 %/v rr ripple rejection f = 1khz ripple 0.5vp-p v in ? v out = 1.0v, i out = 30ma (in case that v out < = = set v out + 1.2v) 55 db v in input voltage 1.5 6.0 v v out / t opt output voltage temperature coefficient i out = 30ma ? 40c < = < = 100 ppm / c i lim short current limit v out = 0v 50 ma i pd ce pull-down constant current 0.15 0.30 0.55 a v ceh ce input voltage ?h? 1.0 6.0 v v cel ce input voltage ?l? 0 0.4 v en output noise bw = 10hz to 100khz 30 vrms r low low output nch tr. on resistance (of b version) v ce = 0v 50
r5325x 7 typical appliation out2 out1 in v out2 v out1 gnd ce1 ce2 v dd r5325x series c3 c2 c1 (external components) output capacitor; ceramic type 0.1 f kyocera cm05b104k06ab murata grm155b31c104ka87b 1.0 f kyocera cm05x5r105k06ab tdk c1005jb0j105k murata grm155b30j105ke18b 1.mounting on pcb make v dd and gnd lines sufficient. if their impedance is hi gh, noise pickup or unstable operation may result. connect a capacitor with a capacitance value as much as 0.1 f or more as c1 between v dd and gnd pin, and as close as possible to the pins. set external components, especially t he output capacitor, as close as possi ble to the ics, and make wiring as short as possible. 2.phase compensation in these ics, phase compensation is made for securing st able operation even if the load current is varied. for this purpose, use a capacitor c2 and c3 with good frequency characteristics and esr (equivalent series resistance). (note: if additional ceramic capacitors are connected with parallel to the output pin with an output capacitor for phase compensation, the operation might be unstable. becaus e of this, test these ics with as same external components as ones to be used on the pcb.) if you use a tantalum type capacitor and esr value of the capacitor is large, output might be unstable. evaluate your circuit with consider ing frequency characteristics. depending on the capacitor size, manufacturer, and part number, the bias characteristics and temperature characteristics are different. evaluate the circuit with actual using capacitors.
r5325x 8 test circuit r5325x series ce2 v out2 ce1 v out1 v dd gnd c1 v v v out2 i out2 v out1 i out1 c2 c3 ? c1 = c2 = c3 = ceramic 0.1 r5325x series ce2 v out2 ce1 v out1 v dd gnd c1 c2 c3 a i ss ? c1 = c2 = c3 = ceramic 0.1 fig.1 standard test circuit fig.2 supply current test circuit r5325x series ce2 v out2 ce1 v out1 v dd gnd i out2 i out1 c2 c3 pg pulse generator ? c2 = c3 = ceramic 0.1 ? c1 = c2 = c3 = ceramic 0.1 fig.3 ripple rejection, line transient respon se fig.4 load transient response test circuit test circuit
r5325x 9 typical characteristics 1) output voltage vs. output current (topt = 25c) 1.2v (vr1/vr2) 2.8v (vr1/vr2) 0 200 100 400 300 500 150 50 350 250 450 output current i out (ma) output voltage v out (v) 0 0.2 0.4 0.6 0.8 1.2 1.0 1.4 v in =1.5v v in =1.8v v in =2.2v v in =3.2v 0 200 100 400 300 500 150 50 350 250 450 output current i out (ma) output voltage v out (v) 0 0.5 1.0 1.5 2.5 2.0 3.0 v in =3.1v v in =3.8v v in =3.5v v in =4.8v 4.0v (vr1/vr2) 0 200 100 400 300 500 150 50 350 250 450 output current i out (ma) output voltage v out (v) 0 0.5 1.0 1.5 2.5 2.0 4.5 4.0 3.5 3.0 v in =4.3v v in =5.0v v in =6.0v 2) output voltage vs. input voltage (topt = 25c) 1.2v (vr1/vr2) 2.8v (vr1/vr2) 02 5 4 36 1 input voltage v in (v) output voltage v out (v) 0 0.2 0.6 0.4 1.4 1.2 1.0 0.8 i out =1ma i out =30ma i out =100ma 02 5 4 36 1 input voltage v in (v) output voltage v out (v) 0 1.0 0.5 3.0 2.5 2.0 1.5 i out =1ma i out =30ma i out =100ma
r5325x 10 4.0v (vr1/vr2) 02 5 4 36 1 input voltage v in (v) output voltage v out (v) 0 1.0 0.5 5.0 2.5 2.0 3.5 3.0 4.5 4.0 1.5 i out =1ma i out =30ma i out =100ma 3) dropout voltage vs. output current 1.2v (vr1/vr2) 2.8v (vr1/vr2) 0 100 125 50 25 75 150 85 c 25 c -40 c output current i out (ma) dropout voltage v dif (mv) 0 200 400 600 100 300 500 800 700 0 100 125 50 25 75 150 85 c 25 c -40 c output current i out (ma) dropout voltage v dif (mv) 0 200 250 50 100 150 300 4.0v (vr1/vr2) 0 100 125 50 25 75 150 85 c 25 c -40 c output current i out (ma) dropout voltage v dif (mv) 0 200 50 100 150 250
r5325x 11 4) output voltage vs. temperature (i out = 30ma) 1.2v (vr1/vr2) 2.8v (vr1/vr2) -50 50 75 0 -25 25 100 temperature topt( c) 1.16 1.17 1.19 1.22 1.21 1.18 1.20 1.23 output voltage v out (v) v in =2.2v -50 50 75 0 -25 25 100 temperature topt( c) 2.60 2.70 2.65 2.80 2.95 2.90 2.75 2.85 3.00 v in =3.8v output voltage v out (v) 4.0v (vr1/vr2) -50 50 75 0 -25 25 100 temperature topt( c) 3.80 3.85 3.95 4.15 4.10 4.05 3.90 4.00 4.20 output voltage v out (v) v in =5.0v 5) supply current vs. input voltage (topt = 25c) 1.2v (vr1/vr2) 2.8v (vr1/vr2) 1.2 4.4 5.2 2.8 2.0 3.6 6.0 input voltage v in (v) 0 4 3 6 9 8 2 1 5 7 10 supply current i ss ( a) 2.8 4.4 5.2 3.6 6.0 input voltage v in (v) supply current i ss ( a) 0 4 3 6 9 8 2 1 5 7 10
r5325x 12 4.0v (vr1/vr2) 4.0 5.0 5.5 4.5 6.0 input voltage v in (v) 0 5 7 9 3 4 6 8 2 1 10 supply current i ss ( a) 6) supply current vs. temperature 1.2v (vr1/vr2) 2.8v (vr1/vr2) -50 50 75 0 -25 25 100 temperature topt( c) 0 3 2 1 5 9 8 7 4 6 10 supply current i ss ( a) v in =2.2v -50 50 75 0 -25 25 100 temperature topt( c) 0 3 2 1 5 9 8 7 4 6 10 supply current i ss ( a) v in =3.8v 4.0v (vr1/vr2) -50 50 75 0 -25 25 100 temperature topt( c) 0 3 2 1 5 9 8 7 4 6 10 supply current i ss ( a) v in =5.0v
r5325x 13 7) dropout voltage vs. set output voltage (topt = 25c) vr1/vr2 1.0 2.0 3.0 4.0 1.5 2.5 3.5 0 300 100 600 500 200 400 700 150ma 100ma 30ma 10ma 1ma set output voltage v reg (v) dropout voltage v dif (mv) 8) ripple rejection vs. frequency (topt = 25c, c out = 0.1 f) 1.2v (vr1/vr2) 2.8v (vr1/vr2) 0 10 20 40 60 30 50 70 80 0.1 1 10 100 frequency f(khz) ripple rejection rr(db) v in =2.2v dc +0.2vp-p,c out =ceramic 0.1 f i out =100ma i out =30ma i out =1ma 0 10 20 40 60 30 50 70 80 0.1 1 10 100 frequency f(khz) ripple rejection rr(db) v in =3.8v dc +0.2vp-p,c out =ceramic 0.1 f i out =100ma i out =30ma i out =1ma 4.0v (vr1/vr2) 0 10 20 40 60 30 50 70 80 0.1 1 10 100 frequency f(khz) ripple rejection rr(db) v in =5.0v dc +0.2vp-p,c out =ceramic 0.1 f i out =100ma i out =30ma i out =1ma
r5325x 14 9) ripple rejection vs. input voltage (dc bias) (topt = 25c, ripple 0.2vp-p) 2.8v (vr1/vr2) 2.8v (vr1/vr2) 0 10 20 40 60 30 50 70 80 2.90 3.10 3.00 3.20 3.30 input voltage v in (v) ripple rejection rr(db) 100hz 1khz 10khz 100khz i out =1ma 0 10 20 40 60 30 50 70 80 2.90 3.10 3.00 3.20 3.30 input voltage v in (v) ripple rejection rr(db) 100hz 1khz 10khz 100khz i out =10ma 2.8v (vr1/vr2) 0 10 20 40 60 30 50 70 80 2.90 3.10 3.00 3.20 3.30 input voltage v in (v) ripple rejection rr(db) 100hz 1khz 10khz 100khz i out =100ma 10) input transient response(c in = none, tr = tf = 5 s, i out = 30ma) 1.2v (vr1/vr2) 1.2v (vr1/vr2) 1.0 1.7 1.6 1.5 1.4 1.3 1.1 1.2 -10 20 10 60 80 40 90 05070 30 time t( s) output voltage v out (v) output voltage input voltage 0 1 2 3 4 c out =ceramic 0.1 f input voltage v in (v) 1.0 1.7 1.6 1.5 1.4 1.3 1.1 1.2 -10 20 10 60 80 40 90 05070 30 time t( s) output voltage v out (v) 0 1 2 3 4 c out =ceramic 1.0 f input voltage v in (v) output voltage input voltage
r5325x 15 2.8v (vr1/vr2) 2.8v (vr1/vr2) 2.6 3.3 3.2 3.1 3.0 2.9 2.7 2.8 -10 20 10 60 80 40 90 05070 30 time t( s) output voltage v out (v) 2 1 0 3 4 5 6 c out =ceramic 0.1 f input voltage v in (v) output voltage input voltage 2.6 3.3 3.2 3.1 3.0 2.9 2.7 2.8 -10 20 10 60 80 40 90 05070 30 time t( s) output voltage v out (v) 2 1 0 3 4 5 6 c out =ceramic 1.0 f input voltage v in (v) output voltage input voltage 4.0v (vr1/vr2) 4.0v (vr1/vr2) 3.8 4.5 4.4 4.3 4.2 4.1 3.9 4.0 -10 20 10 60 80 40 90 05070 30 time t( s) output voltage v out (v) output voltage input voltage 2 1 0 3 4 5 6 c out =ceramic 0.1 f input voltage v in (v) 7 3.8 4.5 4.4 4.3 4.2 4.1 3.9 4.0 -10 20 10 60 80 40 90 05070 30 time t( s) output voltage v out (v) 2 1 0 3 4 5 6 c out =ceramic 1.0 f input voltage v in (v) 7 output voltage input voltage 11) load transient response (c in = ceramic 0.1 f) 2.8v (vr1/vr2) 2.8v (vr1/vr2) 2.4 3.8 3.0 2.8 2.6 2.6 3.0 2.8 -4 8 42432 16 36 02028 12 time t( s) output voltage v out (v) c out =ceramic 0.1 f,v in =3.8v,tr=tf=500ns output current i out (ma) 0 50 100 150 vr1 output current 50ma ? 100ma vr1 output voltage vr2 output voltage load current=1ma 2.4 3.0 2.8 2.6 2.6 3.0 2.8 -4 8 42432 16 36 02028 12 time t( s) output voltage v out (v) 0 50 100 150 c out =ceramic 0.1 f,v in =3.8v,tr=tf=500ns output current i out (ma) vr2 output current 50ma ? 100ma vr1 output voltage vr2 output voltage load current=1ma
r5325x 16 2.8v (vr1/vr2) 2.8v (vr1/vr2) 2.2 3.0 2.8 2.6 2.5 3.1 2.8 -25 50 25 150 100 175 0 125 75 time t( s) output voltage v out (v) 1 50 100 c out =ceramic 0.1 f,v in =3.8v,tr=tf=500ns output current i out (ma) vr1 output current 1ma ? 50ma vr1 output voltage vr2 output voltage load current=1ma 2.2 3.0 2.8 2.6 2.5 3.1 5.2 4.9 4.6 4.3 2.8 -25 50 25 150 100 175 0 125 75 time t( s) output voltage v out (v) 1 50 100 c out =ceramic 0.1 f,v in =3.8v,tr=tf=500ns output current i out (ma) vr2 output current 1ma ? 50ma vr1 output voltage vr2 output voltage load current=1ma 2.8v (vr1/vr2) 2.8v (vr1/vr2) 2.4 3.0 2.8 2.6 2.6 3.0 2.8 -4 8 42432 16 36 02028 12 time t( s) output voltage v out (v) 0 50 100 150 c out =ceramic 1.0 f,v in =3.8v,tr=tf=500ns output current i out (ma) vr1 output current 50ma ? 100ma vr1 output voltage vr2 output voltage load current=1ma 2.4 3.0 2.8 2.6 2.6 3.0 2.8 -4 8 42432 16 36 02028 12 time t( s) output voltage v out (v) 0 50 100 150 c out =ceramic 1.0 f,v in =3.8v,tr=tf=500ns output current i out (ma) vr2 output current 50ma ? 100ma vr1 output voltage vr2 output voltage load current=1ma 2.8v (vr1/vr2) 2.8v (vr1/vr2) 2.4 3.0 2.8 2.6 2.6 3.0 2.8 time t( s) output voltage v out (v) 1 50 100 c out =ceramic 1.0 f,v in =3.8v,tr=tf=500ns output current i out (ma) vr1 output current 1ma ? 50ma vr1 output voltage vr2 output voltage load current=1ma -20 20 180 0 40 100 60 80 120 160 140 2.4 3.0 2.8 2.6 2.6 3.0 2.8 -25 50 25 150 100 175 0 125 75 time t( s) output voltage v out (v) 1 50 100 c out =ceramic 1.0 f,v in =3.8v,tr=tf=500ns output current i out (ma) vr2 output current 1ma ? 50ma vr1 output voltage load current=1ma vr2 output voltage
r5325x 17 2.8v (vr1/vr2) 2.6 2.7 2.8 030 20 70 90 50 100 10 60 80 40 time t( s) output voltage v out (v) 0 50 100 150 c out =ceramic 2.2 f,v in =3.8v,tr=tf=500ns output current i out (ma) vr1/vr2 output current 50ma ? 100ma output voltage 12) turn on speed by ce signal (c in = ceramic 0.1 f) 1.2v (vr1/vr2) 1.2v (vr1/vr2) 0 0.4 0.8 1.2 -10 20 10 60 80 40 90 05070 30 time t( s) output voltage v out (v) 1 0 2 3 4 c out =ceramic 0.1 f,v in =3.3v ce input voltage output voltage i out =1ma i out =30ma ce input voltage v ce (v) 0 0.4 0.8 1.2 -40 80 40 240 320 160 360 0 200 280 120 time t( s) output voltage v out (v) 1 0 2 3 4 c out =ceramic 1.0 f,v in =3.3v,i out =30ma ce input voltage v ce (v) ce input voltage output voltage 2.8v (vr1/vr2) 2.8v (vr1/vr2) 0 1 2 3 -20 40 20 120 160 80 180 0 100 140 60 time t( s) output voltage v out (v) 1 0 2 3 4 ce input voltage v ce (v) c out =ceramic 0.1 f,v in =3.3v,i out =30ma ce input voltage output voltage 0 1 2 3 -20 40 20 120 160 80 180 0 100 140 60 time t( s) output voltage v out (v) 1 0 2 3 4 ce input voltage v ce (v) c out =ceramic 1.0 f,v in =3.3v,i out =30ma ce input voltage output voltage
r5325x 18 4.0v (vr1/vr2) 4.0v (vr1/vr2) 0 2 4 -20 40 20 120 160 80 180 0 100 140 60 time t( s) output voltage v out (v) 0 3 6 9 ce input voltage output voltage ce input voltage v ce (v) c out =ceramic 0.1 f,v in =6.0v,i out =30ma 0 2 4 -20 40 20 120 160 80 180 0 100 140 60 time t( s) output voltage v out (v) 0 3 6 9 ce input voltage v ce (v) c out =ceramic 1.0 f,v in =6.0v,i out =30ma ce input voltage output voltage 13) turn-off speed with ce signal (b version) (c in = ceramic 0.1 f) 1.2v (vr1/vr2) 1.2v (vr1/vr2) 0 0.4 0.8 1.2 1.6 2.0 2.4 -10 20 10 60 80 40 90 05070 30 time t( s) output voltage v out (v) 0 2 1 3 4 2.8 ce input voltage v ce (v) c out =ceramic 0.1 f,v in =3.3v i out =1ma i out =30ma ce input voltage output voltage 0 0.4 0.8 1.2 1.6 2.0 2.4 -40 80 40 240 320 160 360 0 200 280 120 time t( s) output voltage v out (v) 0 2 1 3 4 2.8 ce input voltage v ce (v) c out =ceramic 1.0 f,v in =3.3v i out =1ma i out =30ma ce input voltage output voltage 2.8v (vr1/vr2) 2.8v (vr1/vr2) 0 1 2 3 4 5 6 -20 40 20 120 160 80 180 0 100 140 60 time t( s) output voltage v out (v) 0 2 1 3 4 7 ce input voltage v ce (v) c out =ceramic 0.1 f,v in =3.3v i out =1ma i out =30ma ce input voltage output voltage 0 1 2 3 4 5 6 -10 200 100 600 800 400 900 0 500 700 300 time t( s) output voltage v out (v) 0 2 1 3 4 7 ce input voltage v ce (v) c out =ceramic 1.0 f,v in =3.3v i out =1ma i out =30ma ce input voltage output voltage
r5325x 19 4.0v (vr1/vr2) 4.0v (vr1/vr2) 0 2 4 6 8 -20 40 20 120 160 80 180 0 100 140 60 time t( s) output voltage v out (v) 0 5 10 ce input voltage v ce (v) c out =ceramic 0.1 f,v in =6.0v i out =1ma i out =30ma ce input voltage output voltage 0 2 4 6 8 -10 200 100 600 800 400 900 0 500 700 300 time t( s) output voltage v out (v) 0 5 10 ce input voltage v ce (v) c out =ceramic 1.0 f,v in =6.0v i out =1ma i out =30ma ce input voltage output voltage


▲Up To Search▲   

 
Price & Availability of R5325K033A-TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X